LNCT University Diploma EX, V Semester Syllabus

ELECTRICAL MACHINES -II (DEX-501)

COURSE OUTCOMES:

After Completing the course student should be able to:

CO-1	Analyse the operation of three-phase induction motors. explain the construction and working principle of squirrel cage and slip ring induction motors.
CO-2	Explain working and characteristics of single-phase induction motors, differentiate
CO-3	Understand and evaluate synchronous generators (alternators), explain construction and working of salient pole and cylindrical rotor alternators.
CO-4	Analyse synchronous motor operation and applications, describe the construction, working and starting methods of synchronous motors.
CO-5	Identify and explain special purpose machines

UNIT I: THREE-PHASE INDUCTION MOTORS

Construction and working principle, Types: Squirrel cage and slip ring, Concept of rotating magnetic field, slip, rotor current, torque-slip characteristics, Equivalent circuit and phasor diagram, power stages and efficiency, no-load and blocked rotor test, methods of starting and speed control.

UNIT II: SINGLE-PHASE INDUCTION MOTORS

Types: split-phase, capacitor start, capacitor run, shaded pole, double revolving field theory, equivalent circuit, characteristics and applications, reversal of rotation, introduction to repulsion motors.

UNIT III: SYNCHRONOUS GENERATORS (ALTERNATORS)

Construction and working principle, types: salient pole and cylindrical rotor, emf equation, armature reaction and its effect, voltage regulation (emf, mmf, ZPF methods), parallel operation and synchronizing.

UNIT IV: SYNCHRONOUS MOTORS

Construction and working principle, starting methods, Torque and power developed, V-curves and inverted V-curves, power factor correction, hunting and damping, applications in industry.

UNIT V: SPECIAL PURPOSE MACHINES

Stepper motor - types, working, applications, servo motor - ac and dc types, universal motor - construction, operation, applications, linear induction motor, brushless dc motors (BLDC) - basics and uses.

List of Suggestive Experiments: -

- 1. Load test on three-phase induction motor.
- 2. To determine efficiency, slip, torque, and power factor at various load conditions.
- 3. No-load and blocked rotor test on three-phase induction motor.
- 4. Load test on single-phase induction motor.
- 5. To determine performance parameters such as efficiency and torque.
- 6. Study of split-phase, capacitor start, and shaded pole motors.
- 7. Open circuit and short circuit test on alternator.
- 8. To determine regulation and synchronous impedance.
- 9. Load test on alternator.
- 10. To draw the performance curves (voltage vs load).
- 11. Starting and running of synchronous motor.
- 12. Using damper winding or auxiliary motor.
- 13. V-curve and inverted v-curve of a synchronous motor.
- 14. To study the variation of armature current with excitation.

Reference Books: -

- 1. Electrical Machines, B.L. Theraja
- 2. Electrical Machinery, P.S. Bimbhra
- 3. Electric Machines, D.P. Kothari & I.J. Nagrath
- 4. Electrical Machines, S.K. Bhattacharya
- 5. Special Electrical Machines, K. Venkataratnam