LNCT University Diploma EX, V Semester Syllabus

UTILIZATION OF ELECTRICALENERGY (DEX-502)

COURSE OUTCOMES:

After Completing the course student should be able to:

CO-1	Understand the classification, availability, and environmental impact of energy sources, and recognize the global need for transitioning to renewable energy.
	sources, and recognize the global need for transitioning to renewable energy.
CO-2	Explain the principles of solar radiation, and describe the working and applications of solar thermal and photovoltaic systems.
	solar thermal and photovoltaic systems.
CO-3	Analyze wind energy potential and describe the construction, operation, and
	Analyze wind energy potential and describe the construction, operation, and limitations of wind energy conversion systems.
CO-4	Classify biomass resources and explain biogas generation and biomass conversion technologies along with their applications.
	technologies along with their applications.
CO-5	Describe the basic working principles, applications, and challenges of other renewable sources such as small hydro, geothermal, tidal, wave, and hydrogen energy.
	sources such as small hydro, geothermal, tidal, wave, and hydrogen energy.

UNIT I: ELECTRIC HEATING

Advantages of electric heating, modes: resistance heating - direct and indirect, arc heating - direct and indirect, induction heating - core type and coreless, dielectric heating - principle and applications, applications of electric heating in industry.

UNIT II: ELECTRIC WELDING

Principles of electric welding, types of welding: resistance welding (spot, seam and projection), arc welding (ac and dc) and welding equipment: transformers, generators, rectifiers, comparison of welding methods, safety and precautions in electric welding.

UNIT III: ILLUMINATION ENGINEERING

Fundamentals of illumination – terms: luminous flux, intensity, efficacy, lux, depreciation, laws of illumination, types of lamps: incandescent, fluorescent, mercury vapour, sodium vapour, LED, design of lighting schemes: factory, street, residential, commercial lighting.

UNIT IV: ELECTRIC TRACTION

Introduction to electric traction systems, types of traction systems - ac, dc and composite, traction motors: requirements and types (dc series, 3-phase induction motors), starting and braking methods in electric traction, speed-time curves, schedule speed, average speed, electrification systems and overhead equipment.

UNIT V: ELECTRIC DRIVES AND INDUSTRIAL APPLICATIONS

Concept and classification of electric drives, factors affecting the choice of electric drives, types of loads: constant torque, variable torque, selection of motors for different applications: elevators, pumps, cranes, compressors, machine tools, speed control of electric motors, basics of energy conservation in electrical systems.

Reference Books: -

- 1. Utilization of Electrical Energy, E. Openshaw Taylor.
- 2. Utilization of Electric Power, R. K. Rajput.
- 3. Art & Science of Utilization of Electrical Energy, H. Partab.
- 4. Electric Drives and Control, S. K. Pillai.
- 5. Modern Electric Traction, H. Partab.