LNCT University Diploma EX, V Semester Syllabus

POWER SYSTEM – II (DEX-503)

COURSE OUTCOMES:

After Completing the course student should be able to:

CO-1	Explain the need for protection in power systems and describe protection schemes for
	alternators, transformers, transmission lines and bus bars using CTs and PTs.
CO-2	Analyse different types of faults (symmetrical and unsymmetrical) and apply suitable
	protective schemes such as differential, overcurrent, earth fault, and distance
	protection.
CO-3	Compare the construction, working principles and applications of various types of circuit breakers (oil, air, SF ₆ , vacuum) and switchgear components.
	circuit breakers (oil, air, SF ₆ , vacuum) and switchgear components.
CO-4	Interpret the concepts of power system stability and perform fault analysis using the
	per-unit system and short-circuit calculations for symmetrical faults.
CO-5	Demonstrate understanding of economic load dispatch. principles and analyse various
	tariff structures and power factor improvement methods for efficient power system
	operation.

UNIT I: PROTECTION OF POWER SYSTEM COMPONENTS

Necessity of protection in power systems, protection of alternators, transformers, transmission lines and bus bars, types of faults: symmetrical and unsymmetrical, use of CTs and PTs in protection, differential, over current, earth fault, and distance protection schemes.

UNIT II: CIRCUIT BREAKERS AND SWITCHGEAR

Functions and types of circuit breakers, operating principle of oil, air, SF₆ and vacuum circuit breakers, arc formation and arc extinction methods, rating of circuit breakers, types of switchgear: outdoor and indoor, switchgear components: isolators, fuses, surge arresters and earthing switches.

UNIT III: RELAYS

Introduction to protective relays, classification: electromagnetic, static and numerical relays, construction and working of over current, earth fault, differential and distance relays, relay coordination and setting, use of relays in transformer and motor protection.

UNIT IV: POWER SYSTEM STABILITY AND FAULT ANALYSIS

Steady state and transient stability, swing equation basics (qualitative), short-circuit analysis of symmetrical faults, per-unit system and fault level calculation, importance of system grounding.

UNIT V: ECONOMIC OPERATION AND LOAD DISPATCH

Load curve, load factor, diversity factor, and economic load dispatch: equal incremental cost criterion (qualitative), tariff types: flat rate, block rate, two-part tariff, maximum demand tariff, power factor improvement techniques.

List of Suggestive Experiments: -

- 1. Study of protection scheme for transformer using CTs and relays.
- 2. Study and testing of over current and earth fault relays.
- 5. Study of different types of circuit breakers (oil, air, SF6, vacuum).
- 6. Demonstration of circuit breaker operation and timing test.
- 7. Identification and testing of switchgear components.
- 8. Study and characteristics of electromechanical relays.
- 9. Testing of static or numerical relays using relay test set.
- 10. Calculation of fault currents using per-unit system (manual/software).
- 11. Study of power factor improvement using capacitor bank.

Reference Books: -

- 1. Power System Protection and Switchgear, Badri Ram & D. N. Vishwakarma
- 2. Electrical Power Systems, C. L. Wadhwa
- 3. Switchgear and Protection, Sunil S. Rao
- 4. Modern Power System Analysis, D. P. Kothari & I. J. Nagrath
- 5. Power System Engineering V. K. Mehta & Rohit Mehta