Computer Architecture (301)/ (DCS-301) COURSE OUTCOMES:

After Completing the course student should be able to:

CO-1	To understand the structure, function and characteristics of computer
	systems.
CO-2	To understand the design of the various functional units and
	components of computers.
CO-3	To understand control unit operations.
CO-4	Understand the concept of I/O organization and have ability to understand the concept of cache mapping techniques.
CO-5	Discuss memory organization and mapping techniques.

COURSE CONTENTS:

UNIT I COMPUTER ARCHITECTURE:

Register Transfer and Micro operations, Register Transfer: Bus and Memory Transfers. Three State Bus Buffers, Memory Transfer. Arithmetic Micro operations: Binary Adder, Binary Adder Sub tractor, Half Adder and Full Adder Binary Incrementor. Arithmetic Circuit, Logic Micro operations: List of Logic Micro operations, Hardware, Implementation. Shift Micro operations: Hardware Implementation.

UNIT II BASIC COMPUTER ORGANIZATION AND DESIGN:

Instruction Codes: Stored Program Organization, Indirect Address Computer Registers: Common Bus System, Computer Instruction: Instruction Set Completeness Timing and Control Instruction Cycle: Fetch and Decode, Type of Instruction, Register- Reference Instructions Memory-Reference Instructions: AND to AC, ADD to AC, Load to AC, Store to AC, Branch Unconditionally, Branch and Save Return Address, ISZ, Control Flowchart Input-Output Configuration, Input-Output Instructions, Program Interrupt, Interrupt Cycle, Complete Computer Description, Design of Basic Computer: Control Logic Gates, Control of Registers and Memory, Control of Single flip- flops, Control of Common Bus Design of Accumulator Logic: Control of AC Register, Adder and Logic Circuit, Character Manipulation, Program Interrupt.

UNIT III CENTRAL PROCESSING UNIT:

Introduction, General Register Organization: Control Word Stack Organization: Register Stack, Memory Stack, Reverse Polish Notation, Evaluation of Arithmetic Expressions Instruction Formats: Three Address Instructions, Two Address Instructions, One Address Instructions, Zero Address Instructions, RISC Instructions Addressing Modes Data Transfer and Manipulation: Data Transfer Instructions, Data Manipulation Instructions, Arithmetic Instructions, Logical and Bit Manipulation Instructions, Shift Instructions Program Control: Status Bit Conditions, Conditional Branch Instructions Subroutine Call and Return, Program Interrupt, Types of Interrupts Reduced Instruction Set Computer (RISC): CISC Characteristics, RISC, Characteristics, Overlapped Register Windows.

UNIT IV INPUT OUTPUT ORGANIZATION:

Peripheral Devices: ASCII Alphanumeric Characters Input-Output Interface: I/O Bus and Interface Modules, I/O Versus Memory Bus, Isolated versus Memory-Mapped I/O Asynchronous Data Transfer: Strobe Control, Handshaking, Asynchronous Serial Transfer, Asynchronous Communication Interface First-In, First-Out, Buffer Modes of Transfer: Interrupt-Initiated I/O, Software Considerations Priority Interrupt: Daisy-Chaining Priority, Parallel Priority Interrupt, Priority Encoder, Software Routines, Direct Memory Access

(DMA):DMA Controller, DMA Transfer Input-Output Processor: CPU-IOP Communication Serial Communication: Character-Oriented Protocol, Data Transparency Bit-Oriented Protocol.

UNIT V MEMORY ORGANIZATION:

Memory Hierarchy Main Memory: RAM and ROM Chips, Memory Address Map, Memory Connection to CPU Auxiliary Memory: Magnetic Disks, Magnetic Tape, CD, DVD Associative Memory: Hardware Organization, Read Operation, Write Operation Cache Memory: Associative Mapping, Direct Mapping, Set-Associative Mapping, Writing into Cache, Cache Initialization Virtual Memory: Address Space and Memory Space, Address Mapping.

Reference Books: -

- 1. Morris Mano. M., Computer System Architecture, PHI Learning.
- 2. Tanenbaum, 5/e, Structured Computer Organization, PHILearning.
- 3. Hwang & Brigg, Advanced Computer Architecture, McGraw Hill.
- **4.** Stallings, 4/e, Computer Organization & Architecture.
- 5. Murdocca Computer Architecture & Organization WileyIndia.
- **6.** ISRD group Computer OrganizationTMH.
- 7. T.K. Ghosh, Computer Organization& Architecture, TMH.
- **8.** Computer Organization & Architecture by V. Rajaraman & T. Radha Krishnan, PHILearning.
- 9. Computer System Architecture by P.V.S. Rao, PHI Learning.

Operating System (302)/ (DCS-302)

COURSE OUTCOMES:

After Completing the course student should be able to:

CO-1	Describe basics Concept of Operating System and its functionality.
CO-2	Describe Computer System Processes management concept and apply concept on given problem.
CO-3	Identify Basics of Memory Management and its Schemes and explain concept of Virtual Memory and paging.
CO-4	Describe techniques of file system in OS and explain the concept of file and directory system.
CO-5	List the type of Disk scheduling algorithms and identify RAID Technology concept.

COURSE CONTENTS:

UNIT I INTRODUCTION TO OPERATING SYSTEM:

Basics of Operating System, its functions, Objectives and Types of operating System Introduction of time sharing, real time, Parallel and Distributed Multiprocessor embedded O.S. Structure of Operating System: System components, Operating System services, System calls and Programs, System Structure.

UNIT II PROCESS MANAGEMENT:

Concepts of Processes; Process state (state diagram), Process Scheduling & Process control block (PCB), Operation on Processes, Threads multiprocessor scheduler. Process Scheduling & Algorithms- Basic Concepts, Scheduling criteria, Scheduling Algorithms- FCFS, SJF, Priority, RR, Multiple queues, Multiple processor Scheduling, Real time Scheduling. Dead Locks - Basic Concept of deadlock, deadlock detection, deadlock prevention, deadlock Avoidance, recovery from deadlock & Banker's algorithm.

UNIT III MEMORY MANAGEMENT:

Concept of Memory Management- Logical v/s Physical address, Cache Memory, Swapping, Allocation Techniques (contiguous and Non-contiguous), Fragmentation & Compaction. Concepts of paging and segmentation - Paged Segmentation & Segmented Paging. Concepts of Virtual Memory- Demand Paging, Page Fault, Page replacement and its Algorithms, Allocation of frames, Thrashing.

UNIT IV FILE SYSTEM:

File System interface: File Concepts, Types of Files, Access Methods, Directory Structure, File System mounting, Protection. File System Implementation: File System Structure, Allocation Methods (Contiguous, Non Contiguous, index allocations), Free space Management (Fragmentation compaction), Directory implementation, File-sharing, recovery, network file system, (NFS), Efficiency and performance.

UNIT V DEVICE MANAGEMENT:

Input Output System: I/O Hardware & Interface, Kernel I/O Sub System, I/O request streams. Disk Management-Disk Structure, Disk Scheduling and its algorithms, RAID TECHNOLOGY., protection & security, other operation system:

Reference Books: -

1. Galvin, Operating Systems, Wiley Eastern.

- 2. Godbole A.S Operating Systems, TMH NewDelhi.
- 3. Pal Chaudhury, Operating system, Principals & Design PHILearning
- 4. Bach M.J., Design of the UNIX Operating System, PHI
- 5. Milankovic, Operating Systems, TMH
- 6. Ray Dunkan Advance Dos Programming, BPB.
- 7. Donovons&Mendric, Operating Systems, TMH.
- **8.** William stalling Operating System, pearsonedu.

List of suggestive core experiments: -

- **1.** BIOS Configuration.
- 2. Installation of Various Operation System.
 - a. Windows Vista.
 - **b.** Windows XP.
 - c. Linux.
 - d. Unix.
- 3. File Management Commands, Use of Administration Commands, System Calls.
- 4. Simulation of CPU Scheduling Algorithms (FCFS, SJF, RR).
- 5. Simulation of Memory Allocation, Paging and fragmentation.
- 6. Case study of UNIX, Linux, Windows Vista & Windows XP.

Data Communication (303)/(DCS-303)

COURSE OUTCOMES:

After Completing the course student should be able to:

CO-1	Understand various Data communication concept & technology.
CO-2	Compare different types of transmission media and media access methods.
CO-3	Understand the concept of modulation and demodulation, Digital modulation methods.
CO-4	Understand the concepts of Multiplexing, Spreading and Switching.
CO-5	Recognize various Error Detection and Correction.

COURSE CONTENTS:

UNIT I DATA COMMUNICATION CONCEPT & TECHNOLOGY:

Data Representation, Data Transmission. Modes of Data Transmission- Analog Data, Digital Data, Communication Channels, Synchronous & Asynchronous Data & Communication, Series & Parallel data Communication, Bit rate and Baud rate, Bandwidth & Channel Capacity, Nyquist's, and Shannon's theorems.

UNIT II TRANSMISSION MEDIA:

Transmission Line Characteristic, Liner Distortions, Crosstalk, Twisted Pairs Cable, Coaxial Cable, UTP, STP. Optical Fiber – Multimode Fibers, Modal Dispersion, Mono Mode Fiber, Graded Index Fibers, Total Dispersion, Fiber Attenuation, Radio Media, UHF & Microwaves, Satellite Link, Equalization.

UNIT III MODULATION AND DATA MODEMS:

Concept of modulation and demodulation, Digital modulation methods: PCM, Amplitude, Shift-keying, Frequency Shift-keying, Quadrature PSK (QPSK), Differential PSK (DPSK), Simplex, Half Duplex, Full Duplex.

UNIT IV MULTIPLEXING, SPREADING AND SWITCHING:

MULTIPLEXING: Frequency-Division Multiplexing, Wavelength-Division Multiplexing, Synchronous Time-Division Multiplexing, Statistical Time-Division Multiplexing, SPREAD SPECTRUM: Frequency Hopping Spread Spectrum (FHSS), Direct Sequence Spread Spectrum. CHANNELIZATION: Frequency-Division Multiple Access (FDMA), Time-Division Multiple Access (TDMA), Code-Division Multiple Access (CDMA).

UNIT V ERROR DETECTION AND CORRECTION:

INTRODUCTION: Types of Errors, Redundancy, Detection versus Correction, Forward Error Correction Reverse Error Correction. BLOCK CODING: Error Detection, Error Correction, Hamming Distance and Minimum Hamming Distance. Liner Block Code, CRC, Checksum, telephone and cable networks, cellular and satellite networks.

Reference Books: -

- **1.** Behrouz A Forouzan, Data Communication and Networking, 4e, Tata McGraw-Hill, 2008.
- **2.** William Stallings, Data and Computer Communications, 8e, Pearson Education, 2008.

- **3.** Tomasi Wayne, Introduction to Data Communications and Networking, Pearson Education, 2007.
- **4.** Rajneesh Agrawal and Bharat Bhushan Tiwari, Data Communication and Computer Networks, Vikas Publishing house Ltd.,2005.
- 5. S. Tanenbaum, Computer Networks, Fourth Edition, PearsonEducation.
- 6. Leon-Gracia and I. Widjaja, Communication Networks, Tata McGraw Hill, 2004.
- 7. K. Pahlavan and P. Krishnamurthy, Principles of Wireless Networks, PHILearning.

Data Structure & Algorithms (304)/(DCS-304)

COURSE OUTCOMES:

After Completing the course student should be able to:

CO-1	Apply basics of data structures and algorithm design.
CO-2	Understand representation of arrays.
CO-3	Use Static symbol table, Hash tables and hashing techniques to solve real world problems.
CO-4	Explain the basic structure of linked list with its various operations.
CO-5	Illustrate stack and queue data structure.

COURSE CONTENTS:

UNITI INTRODUCTION:

Introduction to algorithm design and data structure, Top-down and bottom-up approaches to algorithm design, Analysis of Algorithm, complexity measures in terms of time and space Concept of Pointer Variable.

UNITII ARRAYS:

Representation of arrays: single and multidimensional arrays, Address calculation using column and row major ordering.

UNITIH SYMBOL TABLES:

Static symbol table, Hash tables, Hashing Techniques, Collision Handling Techniques.

UNITIV STACKS AND QUEUES:

Representation of stacks and queues using arrays, Type of queues-Linear queue, circular queue, De-queue, Applications of stacks: Conversion form infix to postfix and prefix expressions, Evaluation of postfix expression using stacks.

UNITY LINKED LISTS:

Singly linked list: operations on list, linked stacks and queues, Polynomial representation and manipulation using linked lists, Circular linked lists, Doubly linked lists, Generalized lists. searching and sorting algorithms, trees, graphs.

Reference Books: -

- 1. Sahani, Data structure & Algorithms, TMH.
- 2. Langsam, Tenenbaum, Data Structure using C/C++,PHILearning
- 3. Data structure (Schum outline series) Indian edition, TMH
- **4.** Drozdek Adams, Data Structures and Algorithms in C++, Vikas Publishing House Pvt.Ltd.
- **5.** Kunth D. E., Art of Computer Programming and Fundamentals of Algorithms, Vol.-I.Narosa.
- **6.** Kunth, Art of computer programming, Vol.-III, Sortingsearching.

List of suggestive core experiments: -

- 1. Program implementation for
 - A. Reading and printing of single array and multidimensional array.
 - B. Matrix manipulation.
 - C. For one dimensional, 2D & 3D array.

- **2.** Program for inserting an element in an array
- 3. Program for deleting an element from an array
- 4. Program for Implementation of stack operations PUSH and POP using array.
- 5. Program for Implementation of queue operations Insert and Delete using array.
- **6.** Program implementation for creating, updating, deleting, traversing, searching, and sorting of arrays, linear and circular link, lists, doubly link list, trees, post, prefix.
- 7. Program implementation for manipulation of strings and match algorithms.
- 8. Program implementation for adjacency matrix, traversing and searching.
- 9. Program implementation for adjacency creating matrix tree.

Programming with C++ (305)/(DCS-305)

COURSE OUTCOMES:

After Completing the course student should be able to:

CO-1	Describe the procedural and object-oriented paradigm along with basic structure of C++ program - sequence, selection and iteration.
CO-2	Understand concepts of streams, classes, functions, data and objects.
CO-3	Understand tokens, expressions, and control structures
CO-4	Explain arrays and strings and create programs using them
CO-5	Describe and use constructors and destructors

COURSE CONTENTS:

UNIT I INTRODUCTION:

Introduction to Object oriented concepts, Operators in C++, Token, Expressions and Control Structures Tokens, Keywords, Identifiers, Basic Data Types, User-Defined Data Types, Derived Data Types, Type Compatibility, Scope Resolution Operator, Operator Precedence.

UNIT II CLASSES & OBJECTS

Classes and Objects Specifying a Class, Defining Member Functions, Making a Outside Function Inline, Nesting of Member Functions, Private Member Functions, Arrays within a Class, Memory Allocation for Objects

UNIT III CONSTRUCTORS AND DESTRUCTORS

Constructors, Parametric Constructors, Multiple Constructors in a Class, Constructors with Default Arguments, Dynamic Initialization of Objects, Copy Constructor, Dynamic Constructor, Destructors. Operator Overloading and Type Conversions Definition

UNIT IV INHERITANCE:

Inheritance Defining Derived Classes, Single Inheritance, Multilevel Inheritance, Multiple Inheritance, Hierarchical Inheritance, Hybrid Inheritance, Virtual Base Classes, Abstract Classes, Constructors in Derived Classes.

UNIT V POINTERS & POLYMORPHISM:

Pointers, Virtual Functions and Polymorphism Pointers to Objects, this Pointer, Pointers to Derived Classes, Virtual Functions, Pure Virtual Functions

Reference Books: -

- **1.** Balguruswamy E. (2001), Object-Oriented Programming with Turbo C++, 3rd edition, TMH.
- **2.** Lafore Robert, 2001), Object-Oriented Programming in Turbo C++, 3rd edition, Galgotia Publications.
- **3.** M. kumar, programming with C++,
- **4.** Shukla, object oriented programming in C++, wileyIndia.
- 5. Stevens, Teach Yourself C++, BPB
- **6.** Schildt H, 1997, C++ Complete Reference, TMH
- 7. Kanetkar Y, Programming in C++,BPB.
- **8.** Mahapatra P.B, Thinking in C++, KhannaPublisher. Bruce Euckel, Thinking in C++.
- 9. Introduction to object oriented programming in C++,TMH ISRDgroup

List of suggestive core experiments: -

- 1. Write a program in C++ to find the no is even or odd.
- **2.** Write a program in C++ to print a String.
- **3.** Write a program in C++ to reverse a number.
- **4.** Write a program in C++ to arrange an array in ascending order
- **5.** Write a program in C++ to inline function.
- **6.** Write a program in C++ to friend function.
- 7. Problems related to classes and objects.
- **8.** Problems to illustrate constructor & destructor.
- **9.** Problems related to operator overloading.
- 10. Problems related to default arguments, function overloading, functions overriding.
- 11. Problems related to different types of inheritance.
- **12.** Moderately large function-based problems for which the solutions should be represented by coordinating modules. Formatting a text, replacing a given word in a text with another, counting the number of words, in a text.

Visual Basic Programming (306)/ (DCS-306)

COURSE OUTCOMES:

After Completing the course student should be able to:

CO-1	Understand the concepts of Visual Basic
CO-2	Learn the advantages of Controls in VB
CO-3	Design and develop the event-driven applications using Visual Basic framework.
CO-4	Apply the knowledge of database methods.
CO-5	Understand the concepts of Visual Basic

Reference Books: -

- 1. Visual Basic 6 by Deitel & Deitel Nietro, Person Education.
- 2. Programming with Visual Basic 6.0 Mohammed Azam, Vikas Publication.
- 3. Visual Basic 6 from the ground up, garycornell, TMH
- 4. Visual Basic 6 in easy steps T.M Andercon willey India

List of suggestive core experiments: -

- 1. Introductory Part
 - A. Knowledge of IDE of VB, Menu Bar, Tool Bar, Project Explorer, Tool Box, Properties Window, Form Designer, Form Layout, Immediate Window.
 - B. Concept of Event Driven Programming.
 - C. Customizing the environment: Editor Tab, Format Tab, General Tab, Docking Tab, and Environment Tab.
 - D. Working with from: Loading, Showing & Hiding Form.
 - E. Controlling one form from another.

2. Practical Part

Experiments based on:

- A. Data types of VB.
- B. Control Flow Statements and conditional Statements.
- C. Array and types of Arrays.
- D. Designing Menus and Pop-Up Menus.
- E. Use of MsgBox & InputBox.
- F. VB Controls.
- G. Control Arrays & Collections.
- H. Procedures, Subroutines & Functions.
- I. Graphics with VB.
- J. MDI

3. Application Development Using VB Like:

- A. Exam System
- B. Library System
- C. Banking System
- D. Hospital System
- E. Inventory & Stock System
- F. Small Gaming Program.