Programme:- MCA

Semester - II

Nome	ame of Paper Paper Code									
Iname (Credit Marks									
וחס	DMS	MCA 201	L T J EST CAT					Tot	ſotal	
KDI	DIVIS	WICA-201	3	1	0	80	20	10	0	
		The objective		f tho	2011	in to proce	nt on introduce	tion to d	atabasa	
Со	urse	The objective	ve o		COUI	se is to prese	here to organi	tion to d	alabase	
Obj	ective	management	. syst icient	eins, lv. an	with d off	an emphasis of $a_{\rm ctively}$ inform	a now to organi	ze, mainta MS	ain and	
				iy, an		cuvery - morm		- MIG.		
Unite				C	nton	(Theory)			Hours	
Units				C	JIIICII	s (Theory)			/week	
	Introdu	ction: Advant	tage	of D	BMS	approach, vari	ous view of d	ata, data		
	Databas	e languages	a and	i sub actior	schen ma	na, primary co nagement Data	abase administr	ator and		
Ι	users, da	ata dictionary,	over	all sy	stem	architecture. El	R model: basic of	concepts,	8	
	design issues, mapping constraint, keys, ER diagram, weak and strong entity									
	sets, specialization and generalization, aggregation, inheritance, design of E							gn of ER		
	Domain	s. Relations a	nd K	evs: (lo tab	ins, relations, ki	nd of relations.	relational		
	database	e, various types	s of ke	eys, c	andid	ate, primary, alt	ernate and foreig	gn keys.		
	Relation	al Algebra & S	SQL:	Featu	ires of	f good relational	l database design	n, Codd's		
п	rule, The structure, relational algebra with extended operations, modifications									
11	of Database, basic structure of SQL, set operations, aggregate functions, null values nested sub queries derived relations views join relations DDI in									
	SQL. PL/SQL programming: working with stored procedures, triggers, cursor									
	Database Integrity: general idea. Integrity rules, domain rules, attribute rules,									
	relation	rules, Database	e rule	s, ass	ertion	s, triggers, integ	grity and SQL.			
	Functio	nal Depender	ncies	and	Norn	nalization: basi	c definitions, tr	ivial and		
	irreducil	ble set of de	enend	encie	s. in	troduction to 1	normalization.	non loss	0	
111	decomposition, FD diagram, first, second, third Normal forms, dependency								8	
	preservation, BCNF, multi-valued dependencies and fourth normal form, Join									
	dependency and fifth normal form.									
	Transact	tion states. in	nplem	and nentat	ion c	of atomicity an	d durability. co	oncurrent		
IV	executio	ons, basic idea	of ser	ializa	bility	, basic idea of c	oncurrency cont	rol, basic	8	
	idea of	deadlock, failu	ure cl	assifi	cation	n, storage struct	ure types, stable	e storage		
	implementation, data access, recovery and atomicity- log based recovery,									

Programme:- MCA

Semester - II

wef: July 2022

model, implementations, tree structure diagram, implementation techniques, comparison of the three models.
--

Text Books/ References Book:-

Name of Authors	Titles of the Book	Edition	Name of the
			Publisher
A Silberschatz, H.F	Database System Concepts	VI	MGH Publication
Korth, Sudersan			
C.J Date	An introduction to Database Systems	VI	Addison-Wesley
Elmasri & Navathe	Fundamentals of Database systems	VII	Pearson
Raghurama Krishnan	Database Systems	III	ТМН

COURS	COURSE OUTCOMES: Students will be able to								
CO1	Understand the basic principles of database management systems and Draw ER								
	diagrams to represent simple database application scenarios.								
CO2	Understand relations, keys, relational algebra and SQL and write SQL queries for a								
	given context in relational database.								
CO3	Discuss normalization techniques with simple examples.								
CO4	Describe transaction processing and concurrency control concepts.								
CO5	Learn the various systematic database design approaches								

Programme:-	MCA
--------------------	-----

Semester - II

N	Theory									
Name of Paper Paper Code Credit					Marks					
Object	et L T J EST CAT T					Tot	tal			
Oriente	d	MCA-202								
Method	ology		3	1	0	80	20	10	0	
in C++										
Cou	rea	The objectiv	e of t	his co	urse	is learning abou	t the concepts o	f object o	riented	
Ohie	ctive	methodology	v and	their	imple	mentation using	C++		nemed	
Obje		methodology	una							
T I * 4 -				C					Hours	
Units				U	ontent	s (Theory)			/week	
	Evoluti	on of OOP, O	OP Pa	aradig	, ac	lvantages of OO	P, Comparison	between		
	Functio	Functional Programming and OOP Approach, Characteristics of Object								
	Oriented Language – Objects, Classes, Inheritance, Reusability, User Defined							Defined		
Т	Data Types, Polymorphism, Overloading.									
•	Introduction to C++, Identifier and Keywords, Constants, C++ Operators,									
	Type Conversion, Variable Declaration, Statements, Expressions, Features of Iostream.h and Iomanip.h Input and Output, Conditional Expression Loop							tures of		
	Stateme	ents, Breaking	Conti	ol St	ateme	ents.				
	Progra	mming Const	tructs	s: Inp	out or	utput statements	s: cin, cout, cou	mments,		
	escape	sequence, m	anipu	lators	s, typ	be conversion,	operators, and	library		
II	functions. Control statements, Structures, Enumeration, Functions, passing									
	arguments to functions, reference arguments, overloaded functions, inline									
	tunctions, default arguments, variables and storage class and returning by									
	reference, Arrays and Strings.									
	objects	as physical o	biecto		ing: (⊢obi	objects and data the	vnes object as	function		
	argume	as physical o	ojecia re ae	s, c⊤- funct	ion a	rgument overlo	aded constructo	rs copy		
ш	argument, constructors, as function argument, overloaded constructors, copy constructors, returning objects from functions, this pointer, structures, and									
	classes	static class de	e ooj	atic f	incti	ons, friend functions	tions, const and	classes	0	
	arrav o	f objects. Ove	rload	ing 11	narv	and binary one	rator. Data con	versions		
	(built-in	n & user define	ed dat	a type	es).	since entry ope	2 uu 2011			
ш	argument, constructors, as function argument, overloaded constructors, copy constructors, returning objects from functions, this pointer, structures and classes, static class data, static functions, friend functions, const and classes, array of objects. Overloading unary and binary operator, Data conversions (built-in & user defined data types).								8	

Programme:- MCA	Semester - II	wef: July 2022

-										
IV	Inheritance & Virtual Functions: Inheritance concept, derived class and base class, derived class constructors, overloading member functions, class hierarchies, public, private & protected inheritance, levels of inheritance, multiple inheritance, Virtual Inheritance, new and delete operator. Early & late binding, Virtual functions.									
	Files I/O & Generic Programming: Using istream/ostream member									
X 7	functions, Understanding implementation of Files, Writing and Reading									
V	Objects.Exception	on Handling: types of exceptions, try, th	row, catch	ı block.	8					
	Templates: types	s and concepts of generic programming.								
Text Bo	oks/ References B	ook:-								
Name of	Authors	Titles of the Book	Edition	Name of the						
				Publisher						
Bjarne S	troustrup	The C++ Programming Language	IIIrd	Addision Wesley						
Herbert	Schildt,	"C++ The Complete Reference",		McGraw Hill						
		McGraw Hill								
D. Ravio	chandran,	Programming with C++		Tata Mcgrav	w Hill					
E. Balag	jursamy	Object Oriented Programming using Tata McGra								
		C ++								
				1						
COURS	E OUTCOMES: S	tudents will be able to								
CO1	Describe OOPs	concepts and Understand tokens, expres	sions, and	control struc	tures.					
CO2	Explain function	s, arrays and strings and create program	is using th	em.						
CO3	Describe and use constructors and destructors.									
CO4	Apply virtual an	d pure virtual function & complex prog	ramming s	situations						
CO5	Understand and employ file management.									

Programme:- MCA

Semester - II

Nome	Name of Paper Paper Code Theory								
Name of 1 aper		raper Coue	Credit Marks						
Computer		MCA 202	L	Τα	otal				
Netw	ork	MCA-203	3	1	0	80	20	1	00
Cou	irse	The objective	es	of	this	course include	learning	about co	mputer
Obje	ctive	network orga	nızatı a of d	on oto or	and	implementation	n, obtaining	a the	oretical
		understandin	g of u				iputer networks.		
				~					Hours
Units				Co	ntent	s (Theory)			/week
	Introdu	ction: Comput	er Ne	twork	k, Lag	yered Network A	Architecture-Rev	iew of	
	ISO-OS	SI Model, Ti	ansm	issior	ı Fu	ndamentals-, Co	ommunication	Media-	
	Conductive Metal (Wired Cable), Optical Fiber links, Wireless								
Ι	Communication-Radio links, Satellite Links, Communication Services &								
	Devices, Telephone System., Integrated Service Digital Network (ISDN).,								
	Cellular Phone., ATM. Network Security, Virtual Terminal Protocol,								
	Overview of DNS, SNMP, email, WWW.								
	Data Se	curity and Inte	grity:	Parit	y Ch	ecking Code, Cy	clic redundancy	checks	
П	(CRC), Hamming Code, Protocol Concepts -, Basic flow control, Sliding								
	window protocol-Go-Back-N protocol and selective repeat protocol, Protocol								
	correctness- Finite state machine.								
	Local A	Area Network:	Ethe	rnet :	802.	3 IEEE standard	l, Token Ring :	802.5	
Ш	IEEE standard, Token Bus : 802.4 IEEE standard, FDDI Protocol, DQDB								
	Protocol, Inter Networking, Layer 1 connections- Repeater, Hubs, Layer 2								
	connections- Bridges, Switches, Layer 3 connections Routers, Gateways.								
	Wide A	rea Network: I	ntrod	uction	n, Net	work routing, Ro	outing Tables, Ty	ypes of	
	routing, Dijkstra's Algorithm, Bellman-Ford Algorithm, Link state routing,								
IV	Open shortest path first, Flooding, Broadcasting, Multicasting, Congestion &								
	Dead Lock, Internet Protocols, Overview of TCP/IP, Transport protocols,								U
	Elemen	ts of Transpor	t Pro	tocol,	Tran	smission control	protocol (TCP)), User	
	datagra	m protocol (UI	DP).						
V	Wireles	s Broadband	Net	work	s Te	chnology Over	view, Platform	s and	8

Program	nme:- MCA	A Semester - II	wef: July 2022									
	Standards:											
	wireless broadband fundamentals and Fixed Wireless Broadband Systems,											
	Platforms Enhanced Copper, Fibre Optic and HFC, 3G Cellular, Satellites,											
	ATM and Relay Technologies, HiperLAN2 Standard, Global 3G CDMA											
	Standard, C	CDMA Harmonization G3G Proposal for Proto	ocol Laye	ers.								
Text Bo	oks/ Referen	nces Book:-	[_ · · ·									
Name of	Authors	Titles of the Book	Editio	Name of the								
		~	n	Publisher								
A.S. Tai	nenbaum	Computer Network	4th	PHI								
Forouza	n	Data Communication and Networking	3rd	ТМН								
D.E.Cor	ner	Internetworking with TCP/IP		PHI								
William	Stalling	Data & Computer communications		Maxwell								
				Macmillan								
				International Ed.								
Joh R. V	^v acca	Wireless Broadband Networks Handbook		ТМН								
		3G, LMDS and Wireless Internet										
COURS	E OUTCOM	ES: Students will be able to										
CO1	To develop	o an understanding of different components of	of compu	ter networks, various								
	protocols, modern technologies and their applications.											
CO2	Learn error correction technique and algorithms.											
CO3	Describe LAN protocols and internetworking devices.											
CO4	Describe w	ide area network algorithms and TCP/IP proto	ocol.									
CO5	Describe w	ireless Networks technologies										
	1											

Programme:- MCA

Semester - II

Nome of	e of Paper Daper Code Theory								
	Credit Marks								
Software	oftware L T J EST CAT T					Tot	al		
Engineer Methodo and UM	ring logies L	MCA-204	3	1	0	80	20	10	0
Cou Obje	Course ObjectiveTo understand the software engineering methodologies involved in the of project development and study of the problem identify project objectives and infrastructure.					ved in the y project	phases scope,		
Units				С	onten	ts (Theory)			Hours /week
I	Software Engineering paradigms – Waterfall Life cycle model – Spiral Model –Prototype Model– Software Requirement - Requirements Elicitation Techniques– Initial Requirements Document – SRS Document – Requirements ChangeManagement - Project Management.							8	
П	Software Design Abstraction – Modularity – Software Architecture – Cohesion– Coupling – Various Design Concepts and notations – Development of DetailedDesign & Creation of Software Design Document - Dataflow Oriented design –Designing for reuse – Programming standards.							8	
III	Scope – Classification of metrics – Measuring Process and Product attributes – Direct and Indirect measures – Reliability – Software Quality Assurance – Standards. Need of Software Estimation – Function Point – Risk Management.							8	
IV	Software Testing Fundamentals – Software testing strategies – Black BoxTesting – White Box Testing – System Testing – Functional Testing – StructuralTesting – Regression Testing - Testing Tools – Test Case Management –Challenges of Software Maintenance – Types of Maintenance. SoftwareMaintenance Organization – Maintenance Report.							8	
V	Maintenance Organization – Maintenance Report.Introduction to UML: Use Case Approach,: Identification of Classes and Relationships, Identifying State and Behavior, Use Case Diagram Class Diagram – State Diagram - Sequence 'Diagram – Activity Diagram – Deployment Diagrams Case Study – LMS.								8

Programme:- MCA

Semester - II

Text Bo	Fext Books/ References Book:-									
Name of	Authors	Titles of the Book	Edition	Name of the						
				Publisher						
R. S. Pre	essman	Software Engineering – A	VI	McGraw Hill						
		practitioner's approach								
Pankaj J	alote	Software Engg	IV	Narosa Publications						
Ian Sommerville		Software Engineering 6/e	VI	Addison-Wesley						
COURS	E OUTCOMES: S	tudents will be able to								
CO1	Understand softw	vare process models, software requirement	nts and the	SRS documents.						
CO2	Understand softw	vare design approaches.								
CO3	Describe softwar	e measurement and software risks								
CO4	Learn software testing approaches and fundamentals of maintenance.									
CO5	Understand UM	L to model software solutions, application	ion structu	res, system behavior						
	and business pro	cesses.								

Programme:- MCA

Semester - II

Name of Danan		Damar Cala	Theory							
Iname (n Paper	Paper Code	Credit							
		MCA-205	L	Т	J	EST	CAT	Tot	al	
РҮТ	HON	111011 200	3	1	0	80	20	10	0	
Co	Course The main objective of this course is to provide basic knowledge of						ledge of	Python		
Obje	ective	programming								
Units				Co	ontent	ts (Theory)			Hours /week	
	Introduc	tion to Python:	Pythe	on int	erpret	er and interactive	e mode; values a	nd types:		
	int, floa	at, boolean, st	ring,	and	list;	variables, expres	ssions, statemen	ts, tuple		
Ι	assignm	ent, precedence	e of o	perato	ors, co	omments; module	es and functions,	function	8	
	definition and use, flow of execution, parameters and arguments; Illustrative									
	programs: exchange the values of two variables, circulate the values of n									
	variable	s, distance betw	veen t	wo po	oints.					
	Control	Flow, Function	is Coi	nditio	nals:	Boolean values a	nd operators, co	nditional		
	(if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while,									
	for, break, continue, pass; Fruitful functions: return values, parameters, local and									
11	global scope, function composition, recursion; Strings: string slices, immutability,									
	string functions and methods, string module; Lists as arrays. Illustrative									
	programs: square root, gcd, exponentiation, sum an array of numbers, linear									
	Lists T	unles Dictional	rias I	icter 1	ist on	arations list slice	as list methods	list loop		
	LISIS, II	ty aliasing clo	ning	1515. 1 liete	list op	erations, list sile	es, list methods,	nst tuple		
III	as return	value. Dictior	nnig	noto, oper	ations	and methods: a	dvanced list prod	Pessing _	8	
	as return value; Dictionaries: operations and methods; advanced list processing – list comprehension: Illustrative programs: Sorting and Searching									
	Classes	and Inheritance	e: Obi	$\frac{1}{1}$	riente	d Programming.	Class Instances.	Methods		
	Classes	Examples, WI	ny O(DP, H	lierard	chies, Your Own	n Types – An I	Extended		
IV	Example	e: Building a	Class,	Visu	alizir	ng the Hierarchy	, Adding anothe	er Class,	8	
	Using Inherited Methods									
V	Files, M	odules, Packag	es Fil	es and	dexce	eption: text files,	reading and writ	ing files,	8	

Programme:- MCA	Semester - II	wef: July 2022

format operator; command line arguments, errors and exceptions, handling								
	exceptions, modules, packages; Illustrative programs: word count, copy file.							
Text Bo	oks/ References	Book:-						
Name of	Authors	Titles of the Book	Edition	Name of the Publisher				
Reema 7	Thareja,	"Python Programming using Problem		Oxford University				
		Solving Approach"		Press, 2017				
Allen B.	Downey	"Think Python: How to Think Like a	Second	O'Reilly Publishers,				
		Computer Scientist"		2016				
Guido	van Rossum,	"An Introduction to Python – Revised		Network Theory Ltd.,				
Fred L. I	Drake Jr.	and Updated for Python 3.2"		2011				
COURS	E OUTCOMES:	Students will be able to		4				
CO1	To develop the	basic programming skills in core Pytho	n.					
CO2	Understand loop and decision statements in Python.							
CO3	Learn how to use lists, tuples, and dictionaries in Python programs.							
CO4	Learn Object C	Driented Programming Concepts with Py	thon.					
CO5	Learn file mana	agement and exception handling in Pythe	on applicat	ions for error handling.				

Programme:- MCA

Semester - II

Name of Paper		Donon Codo	Theory							
Name of	Paper	Paper Code	Credit							
Data Structures			L	Т	J	EST	CAT	To	tal	
		MCA-206	3	1	0	80	20	10	00	
Cour	se	The goal of t	his co	ourse	is to	bring out the im	portance of data	a structur	res in a	
Objective variety of applications.										
Units				С	onten	ts (Theory)			Hours	
	<u>C</u> (1	10		· ·	1		1 •	•	/week	
	Stack	and Queue: co	ontigu	ous ii	nplen	nentations of stac	k, various opera	tions on		
Ŧ	stack,	various polish	notat	10ns-1	nIIX,	prefix, postfix,	conversion from	one to	0	
I	anothe	er-using stack;	evalu	ation	ог р	ost and prefix e	expressions. Cor	itiguous	8	
	implementation of queue: Linear queue, its drawback; circular queue; various									
	operations on queue; linked implementation of stack and queue operations									
TT	Gener	al List: list an		cont	1guou	is implementation	n, it's drawback	; singly	0	
11	list linked list using arrows								8	
	Troos	definitions h	aight	dantl	n ord	lar dagraa parar	t and shild rale	tionship		
	ate: B	inary Trees: y	ergint,	theo	i, oiu	complete binar	and child lefa	omplete		
	binomy trees. Trees treversale preorder in order and next order treversale their									
III	requiring and non-requiring implementations, expression trac-									
	linked representation of binary tree operations. Threaded binary trees: forests									
	conversion of forest into tree. Hean-definition									
	Search	hing Hashing	and		ting.	requirements of	of a search alo	orithm.		
	sequer	ntial search h	, and inarv	sear	ching. Thir	dexed sequenti:	al search inter	polation		
IV	search	: hashing-basic	rs. me	ethods	s. col	lision resolution	of collision cl	naining:	8	
1,	Intern	al sorting- Bub	ble so	ort. se	electio	on sort insertion	sort quick sort	merge	U	
	sort on linked and contiguous list, shell sort, heap sort, tree sort									
	Graphs: related definitions: graph representations_ adjacency matrix_adjacency									
	lists. a	adjacency mult	ilist:	traver	sal so	chemes- depth fi	rst search. bread	th first		
V	search	; Minimum spa	nning	g tree:	shor	test path algorith	m; kruskals & c	lijkstras	8	
	algorit	hm. Miscellane	eous f	eature	s Bas	sic idea of AVL t	ree- definition, i	nsertion		

	& deletion oper	rations: basic idea of B-tree- definition of	order deg	ree insertion				
	& deletion operations: B+-Tree- definitions comparison with B-tree: basic							
	idea of string pr	ocessing.		,				
Text Boo	oks/ References B	ook:-						
Name of	Authors	Titles of the Book	Edition	Name of the				
				Publisher				
Kruse R.	L	Data Structures and Program Design	II	PHI				
		in C						
Trembly		Introduction to Data Structure with	IV					
		Applications						
TennenB	aum A.M &	Data Structures using C & C++	III	PHI				
others								
Mark A	Allen Addison	Data structure and Algorithm Analysis						
Wesley		in C Weiss						
COURSI	E OUTCOMES: S	tudents will be able to						
CO1	Describe, explain	n and use abstract data types including sta	icks and q	lueues.				
CO2	Design and impl	ement linked list data structures.						
CO3	Explain Tree dat	a structure.						
CO4	Understand search	ching and sorting algorithms and their imp	plementat	ions				
CO5	Describe Graph,	B tree and B+ tree.						

Programme:- MCA Semester - II wef: July 2022

Programme:- MCA

Semester - II

wef: July 2022

Name of Paper	Paper Code	Practical					
Name of Taper	Taper Code	Credit		Marks			
Programming Lab in C++	MCA-207	Р	J	ESP	САР	Total	
		8	0	120	80	200	

Content:

- 1. Simple C++ programs to implement various control structures.
 - if statement
 - switch case statement and do while loop
 - for loop
 - while loop
 - Array
- 2. Write a program Illustrating Class Declarations, Definition, and Accessing Class Members
- 3. Write a C++ Program to illustrate default constructor, parameterized constructor and copy constructors
- 4. WAP to find the largest of three numbers using inline function.
- 5. Given that an EMPLOYEE class contains following members: data members: Employee number, Employee name, Basic, DA, IT, Net Salary and print data members.
- 6. Write a C++ program to read the data of N employee and compute Net salary of each employee (DA=52% of Basic and Income Tax (IT) =30% of the gross salary).
- 7. Write a C++ Program to display Names, Roll No., and grades of 3 students who have appeared in the examination. Declare the class of name, Roll No. and grade. Create an array of class objects. Read and display the contents of the array.
- 8. WAP to Illustrate Multilevel Inheritance.
- 9. WAP to Demonstrate Multiple Inheritances.
- 10. Write a Program to demonstrate friend function and friend class.
- 11. Write a C++ to illustrate the concepts of console I/O operations.
- 12. Write a C++ program to use scope resolution operator. Display the various values of the same variables declared at different scope levels.
- 13. Write a Program to illustrate New and Delete Keywords for dynamic memory allocation
- 14. Write a C++ program to allocate memory using new operator.
- 15. WAP to demonstrate template class
- 16. WAP to demonstrate template function.

Programme:- MCA	Semester - II	wef: July 2022
-----------------	---------------	----------------

Name of Paper	Paper Code	Practical					
Name of Taper	Taper Code	Cre	edit		Marks		
RDBMS Lab	MCA-208	Р	J	ESP	CAP	Total	
		2	0	30	20	50	

Contents:

Create the following Databases.

Salesmen

SNUM SNAME CITY COMMISSION

1001	Piyush London	12 %	
1002	Sejal Surat	13 %	
1004	Miti London	11 %	
1007	Rajesh Baroda		15 %
1003	Anand New Delhi	10 %	

SNUM : A unique number assigned to each salesman.

SNAME : The name of salesman.

CITY : The location of salesmen.

COMMISSION: The Salemen's commission on orders.

Customers

CNUN	Λ	CNAME	CITY	RATING	SNUM
2001	Harsh	London	100	1001	
2002	Gita	Rome	200	1003	
2003	Lalit	Surat	200	1002	
2004	Guni	Bombay	300	1002	
2006	Chirag	London	100	1001	
2008	Chinmay	y Surat 300 1	007		
2007 1	Pratik R	ome 100 100	4		
CNILIN	π. Λ	ious number	agaianad	to anoth and	tomon

CNUM : A unique number assigned to each customer.

Programme:- MCA

Semester - II

wef: July 2022

CNAME : The name of the customer.

CITY : The location of the customer.

RATING : A level of preference indicator given to this customer.

SNUM : The number of salesman assigned to this customer.

Orders

ONUM AMOUNT ODATE CNUM SNUM

3001	18.69 10/03/97	2008	1007	
3003	767.19 10	0/03/97	2001	1001
3002	1900.10 10/03/9	7 2007	1004	
3005	5160.45 10/03/9	7 2003	1002	
3006	1098.16 10/03/9	7 2008	1007	
3009	1713.23 10/04/9	7 2002	1003	
3007	75.75 10/04/97	2004	1002	
3008	4723.00 10/05/9	7 2006	1001	
3010	1309.95 10/06/9	7 2004	1002	
3011	9891.88 10/06/9	7 2006	1001	

ONUM : A unique number assigned to each order.

AMOUNT : The amount of an order.

ODATE : The date of an order.

CNUM : The number of customer making the order.

SNUM : The number of salesman credited with the sale.

Write queries :-

- 1. Produce the order no, amount and date of all orders.
- 2. Give all the information about all the customers with salesman number 1001.
- 3. Display the following information in the order of city, sname, snum and commission.
- 4. List of rating followed by the name of each customer in Surat.
- 5. List of snum of all salesmen with orders in order table without any duplicates.
- 6. List of all orders for more than Rs. 1000.
- 7. List of names and cities of all salesmen in London with commission above 10%.
- 8. List all customers whose names begins with a letter 'C'.
- 9. List all customers whose names begins with letter 'A' to 'G'.
- 10. List all orders with zero or NULL amount.
- 11. Find out the largest orders of salesman 1002 and 1007.

Programme:- MCA

Semester - II

- 12. Count all orders of October 3, 1997.
- 13. Calculate the total amount ordered.
- 14. Calculate the average amount ordered.
- 15. Count the no. of salesmen currently having orders.
- 16. List all salesmen with their % of commission.
- 17. Assume each salesperson has a 12% commission. Write a query on the order table that will produce the order number, salesman no and the amount of commission for that order.
- 18. Find the highest rating in each city in the form : For the city (city), the highest rating is : (rating)
- 19. List all in descending order of rating.
- 20. Calculate the total of orders for each day and place the result in descending order.
- 21. Show the name of all customers with their salesman's name.
- 22. List all customers and salesmen who shared a same city.

Programme:-	MCA	Semester - II	wef: July 2022
0			v

Name of Paper	Paper Code	Practical				
Name of Taper		Cre	dit		Marks	
Mini Project in	MCA-209	Р	J	ESP	САР	Total
PYTHON		0	2	30	20	50

Design a project using Python to fulfill complete requirements of any office/firm like data insertion, retrieval, editing, searching, and generating various reports.