Programme:- MCA(AI/ML)

Name of Paner		Domory Co.d	Theory								
Name of	l Paper	Paper Code	(Credi	t		Marks				
Data Mi	ning		L	Т	J	EST	САТ	Total			
Transact Processin	tion ng	MAI-301	3	1	0	80	20]	100		
Coı Obje	irse ective	To make stud pattern of the	ents le data to	earn d apply	ifferei / for d	nt data mining tec ecision making.	hniques and enab	le them	to draw		
Units		Contents (Theory) Hours /week									
I	Motivation, importance, Data type for Data Mining: relation Databases, Data Warehouses, Transactional databases, advanced database system and its applications, Data mining Functionalities: Concept/Class description, Association Analysis classification & Prediction, Cluster Analysis, Outlier Analysis, Evolution Analysis, Classification of Data Mining Systems, Major Issues in Data Mining.										
п	Data Warehouse and OLAP Technology for Data Mining: Differencesbetween Operational Database Systems and Data Warehouses, amultidimensional Data Model, Data Warehouse Architecture, Data8Warehouse Architecture, Data Warehouse Implementation, Data CubeTechnology.										
III	Data Preprocessing: Data Cleaning, Data Integration and Transformation, Data Reduction, Discretization and Concept Hierarchy Generation. Data Mining Primitives, Languages, and System Architectures, Concept Description: Characterization and Comparison, Analytical Characterization.								8		
IV	Mining Association Rules in Large Databases: Association Rule Mining: Market Basket Analysis, Basic Concepts, Mining Single -Dimensional Boolean Association Rules from Transactional Databases: the Apriori algorithm, Generating Association rules from frequent items, improving the efficiency of Apriory, Mining Multilevel Association Rules, Multidimensional Association Rules, Constraint -Based Association Mining.8										
V	classifi Cluster	cation & pred Analysis, Maj	iction or Cl	n, Dif usteri	fferen ng M	t Classification ethods, and App	Methods, Predi lications & Tree	iction, nds in	8		

Programme:- MCA(AI/ML)

Semester - III

Data Mining: Data Mining Applications, currently available tools.									
Text Books/ References Book:-									
Name of	Authors	Titles of the Book	Edition	Name of the Publisher					
J. Han	and M.	Data Mining: Concepts and Techniques		Morgan Kaufmann					
Kamber				Publication					
Berson		Dataware housing, Data Mining & DLAP		ТМН					
W.H. In	mon	Building the Dataware house	3 ed	Wiley India					
Anahory	7	Data Warehousing in Real World		Pearson Education					
Adriaan	S	Data Mining		Pearson Education					
S.K. Puj	ari	Data Mining Techniques		University Press,					
				Hyderabad					
COURS	E OUTCOM	ES: Students will be able to							
CO1	Learn data	mining functionalities and cluster analysis.							
CO2	Learn data	warehouse architecture.							
CO3	Characteriz	ze various steps of data mining process.							
CO4	Learn mult	ilevel and multidimensional association rule	es.						
CO5	Learn majo	or clustering methods and their analysis.							

Programme:- MCA(AI/ML)

Name of Paper		Donon Codo	Theory							
Name	of Paper	Paper Code		Credi	t		Marks			
Netwo	ural ork and		L	Т	J	EST	САТ	То	tal	
Deep Learning (Vision and NLP)		MAI-302	3	1	0	80	20	10	00	
Course ObjectiveThe objective of this course is to teach students the basic concepts of neural networ neurons, and deep learning.							etworks,			
Units	Contents (Theory)							Hours /week		
I	The neural network: The neuron, linear perceptron, feed-forward neural network, limitations of linear neurons, sigmoid, tanh, relu neurons, softmax output layer, information theory, cross entropy, Kullback-Leibler divergence.								8	
II	Training feed-forward neural network: Gradient Descent, delta rules and learning rates, gradient descent with sigmoidal neurons, the back-propagation algorithms, stochastic and mini batch gradient descent, test sets, validation sets and overfitting, preventing overfitting.							8		
III	Tensor Flow: Computation graphs, graphs, sessions and fetches, constructing and managing graph, flowing tensors, sessions, data types, tensor arrays and shapes, names, variables, placeholders and simple optimization, linear regression and logistic regression using tensor flow.							8		
IV	Impleme	nt Neural Netwo	rk: Int	roduc	tion to	Keras, Build neur	ral network using	Keras.	8	
v	Evaluating models, data preprocessing, feature engineering, feature learning, overfitting, under-fitting, weight regularization, dropout, universal workflow of deep learning.								8	

Text Books/ References Book:-									
Name of Authors	Edition	Name of the							
			Publisher						
Francois Chollet	Deep Learning with Python	1 edition	Manning Publications						

Programme:- MCA(AI/ML)

Semester - III

Tensor	Flow for Deep	Reza Zadeh, Bharath Ramsundar -	First	O'Reilly					
Learning	5	Shroff/	edition						
Ian	Goodfellow,	Deep Learning	(2018)						
Yoshua	Bengio, Aaron		MIT						
Courvill	e		Press						
COURS	E OUTCOMES:	Students will be able to							
	1								
CO1	Define neuron a	and feed forward network.							
CO2	Learn back prop	pagation algorithms.							
CO3	Construct and manage graphs and tensor arrays.								
CO4	Learn keras and build network using keras.								
CO5	Evaluate various models.								

Programme:- MCA(AI/ML)

N			Theory								
Name (of Paper	Paper Code	(Credi	t		Marks				
Mac	chine		L	Т	J	EST	САТ	otal			
Pattern Recognition		MAI-303	3	1	0	80	20	1	00		
Co Obj	ourse ective	The objective concepts of M	of thi achine	s cour e Lear	rse is ning a	to provide the stund and Pattern Recogn	idents with foundation,	tions in	the basic		
Units	ts Contents (<i>Theory</i>)							Hours /week			
I	Introduction to machine learning, scope and limitations, regression, probability, statistics and linear algebra for machine learning, convex optimization, data visualization, hypothesis function and testing, data distributions, data preprocessing, data augmentation, normalizing data sets, machine learning models, supervised and unsupervised learning.								8		
II	Linearity vs non linearity, activation functions like sigmoid, ReLU, etc., weights and bias, loss function, gradient descent, multilayer network, back- propagation, weight initialization, training, testing, unstable gradient problem, auto encoders, batch normalization, dropout, L1 and L2 regularization, momentum, tuning hyper parameters.							8			
III	Convolutional neural network, flattening, sub-sampling, padding, stride, convolution layer, pooling layer, loss layer, dance layer 1x1 convolution, inception network, input channels, transfer learning, one shot learning, dimension reductions, implementation of CNN like tensor flow, keras etc.							8			
IV	Recurrent neural network, Long short-term memory, gated recurrent unit, translation, beam search and width, Bleu score, attention model, Reinforcement Learning, RL -framework, MDP, Bellman equations, Value Iteration and Policy Iteration Actor-critic model, O-learning SARSA								8		
V	Support Vector Machines, Bayesian learning, application of machine learning in computer vision, speech processing, natural language processing etc, Case Study: Image Net Competition.							8			

Programme:- MCA(AI/ML)

Semester - III

Text Books/ References Book:-									
Name of	Authors	Titles of the Book	Edition	Name of the					
				Publisher					
Christop	her M. Bishop	Pattern Recognition and Machine	2nd	Springer -Verlag					
		Learning	Edition,	New York Inc.					
			2011						
Tom M.	Mitchell	Machine Learning	First	McGraw Hill					
			edition,	Education					
			2017						
Ian G	oodfellow and	Deep Learning		MIT Press, 2016					
Yoshua	Bengio and								
Aaron C	ourville								
Aurelien	Geon	Hands -On Machine Learning with	First	Shroff/O'Reilly					
		Scikit-Learn and Tensorflow:	edition						
		Concepts, Tools, and Techniques to							
		Build Intelligent Systems							
Francois	Chollet	Deep Learning with Python	1	Manning					
			edition	Publications					
		L							
COURS	E OUTCOMES:	: Students will be able to							
CO1	Explain Machine	e Learning concepts, classifications of Ma	chine Lea	rning					
CO2	Learn normaliza	tion and L1, L2 regularization.							
CO3	Learn convolution	onal neural network.							
CO4	Learn RL frame	work and Bellman equations							
CO5	Understand the c	concepts of natural language processing.							

Programme:- MCA(AI/ML)

Name o	f	Paper Code				Th	eory						
Paper		Taper Coue		Cred	it		Marks						
Cyber	м	d MAI-304 (E-I(1))		Т	J	EST	CAT	Т	otal				
Security a Law	and (E			1	0	80	20	1	00				
		The chiesting	of	1		in the enclude stand	lanta ta un danata		ana and				
Com	Ine objectives of this course is to enable students to understand, exp												
Objec	ise tivo	with frauds an	d de	ecenti	ons (ng cyber iaw. Do	scams) and oth	er cybe	r crimes				
Objec	uve	that are taking place via the internet.											
									Hours				
Units	Units Contents (Theory)						/week						
	Introd	luction: Cyber S	Secu	rity -	- Cyb	er Security polic	cy – Domain of	Cyber					
I	Security Policy – Laws and Regulations – Enterprise Policy – Technology												
	Operations - Technology Configuration - Strategy Versus Policy - Cyber												
	Security Evolution – Productivity – Internet – E-commerce – Counter												
	Measures - Challenges.												
	Application Security: Data Security Considerations, Backups, Archival												
	Storage and Disposal of Data. Security Threats: Viruses, Worms, Trojan												
п	Horse, Bombs, Trapdoors, Spoofs, E-mail Viruses, Macro Viruses, Malicious								8				
	Software, Network and Denial of Services Attack, Security Threats to E-								0				
	Commerce, Electronic Payment System, E-Cash, Credit/Debit Cards, Digital												
	Signature.												
	Intern	et Security: S	Secu	rity	Issues	s on Web, Im	portance of Fi	rewall,					
	Comp	onents of Firew	all,	Tran		on Security, En	erging Client	Server,	0				
111	Securi	ty Inreats, Network	Ork	Secu	rity, I	Factors to Consid	ter in Firewall I	Design,	8				
	Challe	uton of Firewa	ans,	Intr	oauci	ion to Biomet	ne security a	na its					
	Funds	mentals of Cvl	ns.	Law	· Sec	Purity Policies V	WWW Policies	F-mail					
	Securi	ty Policies (orn	orate	Pol	licies Publishi	ng and Notif	ication					
IV	Requi	rement of the Pol	icie	s. Inte	ellecti	al Property Law	: Convright Act.	Patent	8				
- '	Law. S	Software Piracy	and	Softv	vare I	License. Semicon	ductor Law and	Patent	C				
	Law, Software Friacy and Software License, Semiconductor Law and Patent Law, Cyber Laws in India: IT Act 2000 Provisions.												

Programme:- MCA(AI/ML)

Semester - III

	Investigation and Ethics: Cyber Crime, Cyber Jurisdiction, Cyber Crime	
	and Evidence Act, Treatment of Different Countries of Cyber Crime, Ethical	
\mathbf{V}	Issues in Data and Software Privacy, Plagiarism, Pornography, Tampering	8
	Computer Documents, Data Privacy and Protection, Domain Name System,	
	Software Piracy, Issues in Ethical Hacking.	

Text Books/ References Book:-									
Name of	f Authors	Titles of the Book	Edition	Name of the					
				Publisher					
Rick Ho	ward	Cyber Security Essentials		Auerbach					
				Publications					
Mayank	Bhushan	Fundamentals of Cyber Security		BPB Publications					
Gupta & Gupta		Information Security & Cyber Laws		Khanna Publishing					
				House					
Farooq Ahmad		Cyber Law in India		Pioneer Books.					
Harish Chander		Cyber Law and IT Protection		PHI Publication.					
COURS	SE OUTCOMES	S: Students will be able to							
CO1	Understand the	concept of cybercrime and its effect on ou	utside worl	d					
CO2	Learn various th	nreats to data.							
CO3	Interpret and ap	ply IT law in various legal issues							
CO4	Distinguish diff	erent aspects of cyber law							
CO5	Apply Informat	ion Security Standards compliance during	g software o	lesign and					
	development								

Programme:- MCA(AI/ML)

			Theory							
Name	of Paper	Paper Code	(Credi	t		Marks			
Compil	er	MAI-304 L T J EST CAT		CAT	Т	otal				
Design		(E-I(2))	3	1	0	80	20	1	00	
Course Objective		The objective design, its va	be objective this course is to understand the basic principles of n, its various constituent parts, algorithms and data structures re-							
Ŭ	be used in the compiler.									
Units Contents (<i>Theory</i>)						Hours				
	Introduction Objective Compiler Translator Internetor definition Disco of							/week		
	Introduc	Ction : Objectiv	e, Co	mpile	er, Ira	anslator, Interpre	ter definition, Pl	hase of		
Ι	compiler, Bootstrapping, Review of Finite automata lexical analyzer, Input,									
	handling									
	Portion of CEC Ambiguity of grommony Introduction to possing. Top down									
	Review of CFG Ambiguity of grammars: Introduction to parsing, Top down									
	parsing predictive parsers Bottom up parsing Shift reduce parsing I R parsers									
Π	Construction of SLR Conical LR & LALR parsing tables parsing with									
	ambiguous grammar. Operator precedence parsing Introduction of automatic									
	parser generator: YACC error handling in LR parsers									
	Syntax	directed defi	nitio	ns; C	Constr	uction of synta	x trees, S Att	ributed		
	Definitio	n, L-attributed	l defi	nitior	is, To	p down translat	ion. Intermediat	e code		
III	forms us	sing postfix n	otatio	n, D	AG, T	Three address c	ode, TAC for	various	8	
	control structures, Representing TAC using triples and quadruples, Boolean									
	expressio	on and control	struct	ures						
	Storage	organization	; Sto	orage	alloc	ation, Strategies	s, Activation re	ecords,		
IV	Accessin	g local and not	n-loca	ıl nam	nes in	a block structure	d language, Para	imeters	8	
	passing,	Symbol table o	organi	zatior	n, Dat	a structures used	in symbol tables	5		
	Definitio	on of basic blo	ock c	ontro	l flov	v graphs; DAG	representation o	f basic		
V	block, A	dvantages of I	DAG,	Sour	ces of	f optimization, L	oop optimizatio	n, Idea	8	
v	about gl	lobal data flo	ow a	nalysi	is, L	oop invariant c	computation, Pe	ephole	0	
	optimizat	tion, Issues in	desigi	n of c	ode ge	enerator, A simpl	e code generator	, Code		

Programme:- MCA(AI/ML)

generation from DAG.									
Text Books/ References Book:-									
Name of	f Authors	Titles of the Book	Edition	Name of the					
				Publisher					
Mishra and		Theory of Computer Science –	II	PHI					
Chandrashekaran		Automata languages and computation							
John C Martin		Introduction to Languages and The		ТМН					
		Theory of Computation							
Tremblay		Theory and Practice of compiler		Mc Graw Hill					
		writing							
Holuv		Compiler Design in C		PHI					
			1						
COURS	E OUTCOMES:	Students will be able to							
CO1	Use compiler c	onstruction tools and describes the Fu	unctionalit	y of each stage of					
COI	compilation proc	cess							
CO2	Analyze differen	t representations of intermediate code.							
CO3	Construct new co	ompiler for new languages							
CO4	Design and impl	ement LL and LR parsers							
CO5	Understand cont	rol flow graph with examples							

Programme:- MCA(AI/ML)

Nama	f Domon	Domon Codo				Th	eory				
Iname (n raper	raper Code	(Cred	it		Marks				
Introdu	ction to	MAI-304	L	Т	J	EST	CAT	Т	otal		
and Big	Data	(E-I(3))	3	1	0	80	20	1	00		
~								•			
Co	urse	To make stude	ents l	earn	abou	t big data and the	eir analysis tech	niques t	o use in		
Obj	ective	decision makin	ig an	d des	signin	g applications.					
									TT		
Units				Con	tents	(Theory)			Hours		
	ΙΝΤΡΟΙ			<u> </u>		CE AND DIC I	ATA Untroduc	tion to	/week		
	INTRODUCTION TO DATA SCIENCE AND BIG DATA Introduction to										
	Definition. Risks of Big Data. Structure of Big Data – Web Data [•] The Origin										
т	Big Data – Evolution Of Analytic Scalability – Analytic Processes and Tools										
•	Analysis versus Reporting – Core Analytics versus Advanced Analytics –										
	Modern Data Analytic Tools – Statistical Concepts: Sampling Distributions –										
	Re-Sampling – Statistical Inference – Introduction to Data Visualization						lions				
	DATA A	ANALYSIS USI	NG I	R : U	Inivar	iate Analysis: Fr	equency, Mean,	Media			
	n, Mode, Variance, Standard Deviation, Skewness and Kurtosis – Bivariate										
	Analysis	s: Correlation – F	Regre	ssior	n Mod	leling: Linear and	d Logistic Regre	ssion –			
11	Multivariate Analysis – Graphical representation of Univariate. Bivariate and										
	Multivariate Analysis in R: Bar Plot, Histogram, Box Plot, Line Plot, Scatter										
1	Plot, Lat	ttice Plot, Regres	sion	Line	, Two	-Way cross Tabu	lation.				
	DATA	MODELING: I	Baye	sian	Mod	eling – Suppor	t Vector and	Kernel			
	Methods	s – Neuro – F	uzzy	Mo	deling	g – Principal C	component Anal	ysis –			
III	Introduc	tion to NoSQL:	CAI	P Th	eorem	n, Mongo DB: R	DBMS Vs Mon	igoDB,	8		
	Mongo	DB Database M	odel	, Da	ta Ty	pes and Shardin	g – Data Mode	ling in			
	HBase:	Defining Schema	1 – C	RUD	Oper	rations					
	DATA	ANALYTICAL	FRA	ME	WOR	KS : Introductio	n to Hadoop: H	Iadoop	8		
	Overvie	w – RDBMS	versu	is H	adoop	o – HDFS (Ha	doop Distribute	d File			
IV	System)	: Components an	nd B	lock	Repli	cation – Introdu	ction to MapRe	duce –			
	Running	g Algorithms Us	sing	Map	Red	uce – Introduct	ion to HBase:	HBase			
	Architec	cture, HLog and	HFil	e, Da	nta Re	eplication – Intro	duction to Hive,	Spark			

Programme:- MCA(AI/ML)

	and Apache Sqoop.								
V	STREAM ANAI Model and Archi Filtering Streams Moments – Coun	LYTICS : Introduction To Streams Co itecture – Stream Computing – Samplin s – Counting Distinct Elements in a ting Oneness in a Window – Decaying V	ncepts – S ng Data in Stream – Vindow.	tream Data a Stream – Estimating	8				
Text Books/ References Book:-									
Name o	of Authors	Titles of the Book	Edition	Name of th	е				
				Publisher					
Bill Fra	nks	Taming the Big Data Tidal Wave:		John Wiley	& sons				
		Finding Opportunities in Huge Data							
		Streams with Advanced Analytics							
Rachel	Schutt, Cathy	Doing Data Science		O'Reilly					
O'Neil,									
COUR	SE OUTCOMES	: Students will be able to							
CO1	Understand data	science and Modern Data Analytic Too	ls						
CO2	2 Learn various data analysis tools.								
CO3	Learn and under	stand data modelling tools.							
CO4	Differentiate var	ious big data technologies like Hadoop I	MapReduce	e, Pig, Hive, I	Hbase.				
CO5	Understand strea	m computing and filtering streams.							

Programme:- MCA(AI/ML)

Name of Paper		Paper Code				The	ory						
	i apci		(Credi	t		Marks						
Interne	et of	MAI-304	L	Т	J	EST	CAT	Total					
Thin	gs	(E-I(4))	3	1	0	80	20	100					
		I											
Сош	20	This course enables student to understand the basics of Internet of things and											
Objec	tive	protocols. It i	ntrod	uces s	some	of the application	n areas where Internet	of Things					
5		can be applie	1ed.										
Units				Cor	itents	(Theory)		Hours					
	T . 1		• . •					/week					
	Introduction: Definition, Characteristics of IOT, IOT Conceptual												
Ι	namework, 101 Architectural view, Physical design of 101, Logical design												
	Machine to machine (M2M). SDN (acftware defined network inc) and												
	NEV (network function virtualization) for IOT data storage in IOT IOT												
11	Cloud Based Services.												
	Design Principles for Web Connectivity: Web Communication Protocols												
	for connected devices. Message Communication Protocols for connected												
ш	device s SOAP REST HTTP Restful and Web Sockets Internet												
111	Connectivity Principles. Internet Connectivity Internet based												
	communication. IP addressing in IOT. Media Access control												
	Sensor	Technology,	Partic	cipato	ry Se	nsing, Industrial	IOT and Automotive						
IV	IOT, A	Actuator, Sens	or da	ta Co	- mmu	nication Protoco	ls ,Radio Frequency	8					
	Identification Technology, Wireless Sensor Network Technology.												
	IOT I	Design method	ology	: Spe	ecifica	ation -Requirem	ent, process, model,						
	service, functional & operational view. IOT Privacy and security solutions,												
V	Raspbe	erry Pi & ardu	ino d	evices	s. IO	Γ Case studies: s	smart city streetlights	8					
	contro	l & monitoring											

Programme:- MCA(AI/ML)

Text Books/ References Book:-											
Name of	fAuthors	Titles of the Book	Edition	Name of the							
				Publisher							
Rajkama	al	Internet of Things		Tata McGraw Hill							
Vijay M	ladisetti and	Internet of things (A - Hand-on-	1st	Universal Press							
Arshdee	epBahga	Approach)	Edition								
Hakima	Chaouchi	The Internet of Things:		Wiley publication.							
		Connecting Objects									
Charles	s Bell	MySQL for the Internet of things		A press							
				publications							
Francis	dacosta	Rethinking the Internet of things:	1st	Apress							
		A scalable Approach to	edition	publications2013							
		connecting everything									
Donald	Norris	The Internet of Things: Do - It -		McGraw Hill							
		Yourself at Home Projects for		publication.							
		Arduino, Raspberry Pi and									
		BeagleBone Black									
COURS	E OUTCOM	ES: Students will be able to									
CO1	Describe IoT	architecture and its physical/logical	design.								
CO2	Understand N	M2M and SDN networking.									
CO3	Learn design	principles for web connectivity.									
CO4	Evaluate the	wireless technologies for IoT.									
CO5	Implement b	asic IoT applications on embedded p	olatform								

Programme:- MCA(AI/ML)

Name of Paper		Paper Code		Theory							
Tunic or	i apei			Credi	t		Marks				
Design	and	MAI-305	L	Т	J	EST	CAT	Т	otal		
Analys Algorit	is of hms	(E-II(1))	3	1	0	80	20	1	100		
0											
Course		The objectiv	es of	f this	cour	rse is to apply	important algo	rithmic	design		
Objective		paradigms an	d met	thods	of and	alysis.					
Units	Conter	nts (Theory)							Hours /week		
	Pre-ree	quisites: Data s	tructu	ıre &	Disci	rete structures, m	nodels of comput	ation,			
Ι	algorith	nm analysis, or	der a	rchite	cture,	time space con	plexities averag	e and	8		
	Divide	and conquer.	Struc	ture c	of div	ide-and-conquer	algorithms: exar	nnles			
	Binary search, quick sort, Strassen Multiplication: Analysis of divide and										
II	conquer run time recurrence relations. Graph searching and Traversal										
Overview, Traversal methods (depth first and breadth first search)											
	Greedy	y Method: Ov	vervie	w of	the	greedy paradigr	n examples of	exact			
	optimization solution (minimum cost spanning tree), Approximate solution										
TTT	(Knapsack problem), Single source shortest paths. Branch and bound: LC										
111	searching Bounding, FIFO branch and bound, LC branch and bound										
	application: 0/1 Knapsack problem, Traveling Salesman Problem, searching										
	& sorting algorithms.										
	Dynam	nic programi	ning	: O	vervie	ew, difference	between dy	namic			
IV	program	nming and divi	de ar	nd con	nquer,	Applications: S	shortest path in g	graph,	8		
1.	Matrix	multiplication	, Tr	avelir	ng sa	lesman Probler	n, longest Cor	nmon	0		
	sequen	ce. Back trackir	ig: Ov	vervie	w, 8-0	queen problem, a	and Knapsack pro	oblem			
	Compu	utational Com	plexi	ty: C	ompl	exity measures,	Polynomial Vs	non-			
V	polyno	mial time com	plexit	y; NI	P-hard	and NP-compl	ete classes, exar	nples.	8		
	Combinational algorithms, string processing algorithm, Algebric algorithms,										
	set algo	orithms									

Programme:- MCA(AI/ML)

Semester - III

Text Books/ References Book:-											
Name of A	Authors	Titles of the Book	Edition	Name of the							
				Publisher							
Ullman		"Analysis and Design of		ТМН							
		Algorithm"									
Goodman		"Introduction to the Design &		TMH-2002							
		Analysis of Algorithms									
Sara Bass	e, A. V. Gelder	Computer Algorithms		Addison Wesley							
T. H. Cor	rmen, Leiserson	Introduction of Computer		PHI							
, Rivest ar	nd Stein	algorithm									
E. Horov	vitz, S. Sahni,	Fundamentals of Computer		Galgotia							
and S. Raj	sekaran	Algorithms		Publication							
COURSE	COUTCOMES:	Students will be able to									
CO1	Describe time a	nd space complexities.									
CO2	Design algorith	ms using divide and conquer, greedy	and dynamic pr	ogramming.							
CO3	Solve knapsack	problem and apply branch and boun	d techniques.								
CO4	Apply the dyn	amic programming technique to so	olve real world	problems such as							
	knapsack and T	SP, 8 Queens problem etc.									
CO5	Understand NP	hard problems.									

Programme:- MCA(AI/ML)

Nama of Papar		Daman Cada	Theory							
Name of	Paper	Paper Code	(Credi	t		Marks			
SO	FT	MAI-305	L	Т	J	EST	CAT	Т	otal	
COMPU	U TING	(E-II (2))	3	1	0	80	20		100	
Cou Obje	ırse ctive	The objective various type computing.	e of s of	the c soft	ourse com	is to expose the second s	ne students to s les, and applica	oft cor ations	nputing, of soft	
Units	Conten	nts (Theory)							Hours /week	
I	Overview of Soft Computing, Difference between Soft and Hard computing, Brief descriptions of different components of soft computing including Artificial intelligence systems Neural networks, fuzzy logic, genetic algorithms. Artificial neural networks Vs Biological neural networks, ANN architecture, Basic building block of an artificial neuron, Activation functions, Introduction to Early ANN architectures (basics only) -McCulloch & Pitts model, Perceptron, ADALINE, MADALINE							8		
П	Artificial Neural Networks: Supervised Learning: Introduction and how brain works, Neuron as a simple computing element, The perceptron, Back- propagation networks: architecture, multilayer perceptron, back-propagation learning-input layer, accelerated learning in multilayer perceptron, The Hopfield network, Bidirectional associative memories (BAM), RBF Neural Network							8		
III	Artifici Genera Organiz	al Neural Net lized Hebbian zing Computatio	work lea onal N	s: U rning Maps:	nsupe algo Koho	rvised Learning prithm, Compet pnen Network.	: Hebbian Lea itive learning,	rning, Self-	8	
IV	Fuzzy I fuzzy ri	Logic Crisp & a	fuzzy ithm.	sets Fuzz	fuzzy zy log	relations fuzzy	conditional state	ments	8	
V	 fuzzy rules fuzzy algorithm. Fuzzy logic controller. Genetic algorithms basic concepts, encoding, fitness function, reproduction- Roulette wheel, Boltzmann, tournament, rank, and steady state selections, Convergence of GA, Applications of GA case studies. Introduction to genetic programming- basic concepts. 								8	

Programme:- MCA(AI/ML)

Semester - III

Text Books/ References Book:-										
Name of	f Authors	Titles of the Book	Edition	Name of the						
				Publisher						
R. Rajas	ekaran and G. A	Neural Networks, Fuzzy Logic, and		Prentice Hall of						
and Vija	yalakshmi Pa	Genetic Algorithms		India						
D. E. Go	oldberg	Genetic Algorithms in Search,		Prentice Hall						
		Optimization, and Machine Learning								
		,Addison-Wesley supplementary								
		reading G . L. Fausett, Fundamentals								
		of Neural Networks								
T. Ross,		Fuzzy Logic with Engineering		Tata McGraw						
		Applications	Hill							
COURS	SE OUTCOMES:	Students will be able to								
CO1	Learn about soft	computing techniques and their application	ations							
CO2	Learn supervised	l learning concepts and back propagation	on networks.							
CO3	Learn unsupervi	sed learning and kohonen network								
CO4	Understand fuzz	y sets and fuzzy relations.								
CO5	Apply genetic al	gorithms to combinatorial optimization	problems.							

Programme:- MCA(AI/ML)

Semester - III

Name of Paper		Papar Cada	Theory								
TVAILLE	л і ареі	Taper Coue	(Credi	t		Marks				
Com	puter	MAI-305	L	Т	J	EST	CAT	To	tal		
Gra	phics	(E-II(3))	3	1	0	80	20	10)0		
Co Obj	urse ective	The objective graphics. it pr 2D transforma	of the resents tion c	the i the i	ject is mport and ar	to introduce the ant drawing algor introduction to 31	students the conc ithm, polygon fitt D transformation.	cepts of co ting, clipp	omputer ing and		
Units		Contents (Theory)							Hours /week		
	Introduction to Computer Graphics and its applications, Components and										
	working of Interactive Graphics; Video Display Devices: Raster scan and										
	Random Scan displays, Display Processors; Resolution, Aspect Ratio, Refresh										
Ι	CRT, interlacing; Color CRT monitors, LookUp tables, Plasma Panel and LCD										
	monitors, Interactive Input and Output Devices: keyboard, mouse, trackball,										
	joystick, light pen, digitizers; image scanners, Touch Panels; Voice systems;										
	printers, plotters; Graphics Software; Coordinate Representations;										
	Drawing Geometry: Symmetrical and Simple DDA line drawing algorithm,										
	Bresenham's line Algorithm; loading frame buffer; Symmetrical DDA for										
II	drawing circle, Polynomial method for circle drawing; circle drawing using										
	polar coordinates, Bresenham's circle drawing; Generation of ellipse; parametric										
	representation of cubic curves, drawing Bezier curves; Filled-Area Primitives:										
	Flood fill algorithm, Boundary fill algorithm, Scan-line polygon fill algorithm										
	2-D Tra	ansformations:	trans	latior	i, rota	tion, scaling, ma	trix representati	ons and			
III	homoge	neous coordin	ates,	com	posite	transformations	s, general pivo	ot point	8		
	rotation,	general fixed	point	scalıı	ng, Sł	hearing; Reflection	on ; Reflection a	bout an			
	arbitrary	/ line; 2-D Viev	ving:	windo	W, V1	ewport;					
	2-D viev	wing transform	ation,	zoon	nıng,	panning; Clippir	ig operations: po	oint and			
TX 7	line cli	pping, Conen-	Suthe	rland	line	clipping, mid-	point subdivisi	on line	0		
11	clipping, Liang-Barsky line clipping, Sutherland-Hodgman polygon clipping;										
	Weiler-Atherton polygon Clipping Pointing and positioning techniques; rubber										
	oand tec	annique; draggii	1g;	1	of -1	is sta 2D to	former et : e :	6			
V	J-D Gr	applies: 3-D		ling	UI OU	ojects, 3D trans	theorem is and	ces for	8		
	translati	on, scanng and	i rota	uon,	parall	er projection: Of	mographic and	oblique			

Programme:- MCA(AI/ML)

Semester - III

projection; perspective projection; Hidden surface removal: Zbuffer, depthsorting, area subdivision, BSP-Tree method; Ray casting; Shading: Modelling light intensities, Gouraud shading, Phong shading; Introduction to Animation, Tweening, Morphing, Fractals;

Text Bo	oks/ References	Book:-		
Name of	f Authors	Titles of the Book	Edition	Name of the
				Publisher
D.P. Mu	kherjee	Fundamentals of Computer		PHI
		Graphics and Multimedia		
Newmar	nn & Sproull, ,	Principles of Interactive		McGraw Hill
		Computer Graphics		
Apurva .	A. Desai,	Computer Graphics		PHI
Rogersl		Procedural Elements of Computer		McGraw Hill
		Graphics		
COURS	E OUTCOMES	5: Students will be able to		
CO1	Describe variou	s I/O devices.		
CO2	Use various gra	phical design algorithms.		
CO3	Use 2-D transfo	ormation methods.		
CO4	Use various clip	pping methods.		
CO5	Use 3-D transfo	prmation methods and projection met	hods.	

Programme:- MCA(AI/ML)

Name of Paper			Theory							
Name of	Paper	Paper Code		Credi	t					
Dictrib	utod	MAT 205	L	Т	J	EST	САТ	Т	otal	
Syste	ms	(E-II(4))	3	1	0	80	20	1	00	
Course ObjectiveObjective of this Course is to provide hardware and software issues in distributed systems. To get knowledge in distributed architecture, synchronization, consistency and replication, fault tolerance, secur distributed file systems.						modern naming, ity, and				
									Hours	
Units	Contents (Theory)						/week			
Ι	Introduction to Distributed Systems: Goals of Distributed Systems, Hardware and Software concepts, the client server model, Remote procedure call, remote object invocation, message and stream oriented communications							8		
II	Process and synchronization in Distributed Systems: Threads, clients, servers, code migration, clock synchronization, mutual exclusion, Bully and Ring Algorithm, Distributed transactions.							8		
III	Consistency, Replication, fault tolerance and security: Object replication, Data centric consistency model, client-centric consistency models, Introduction to fault tolerence, process resilience, recovery, distributed security architecture, security management, KERBEROS, secure socket layer, cryptography.								8	
IV	Distrib Goals system	outed Object H a nd Design Is a, sun network f	Based sues file sy	and of Dis stem,	File stribu	Systems: CORE ted file system, t	3A, Distributed types of distribut	COM, ed file	8	
V	Distrib distrib ordina Orbix,	outed shared me uted document tion based syst Visbrokes, Ob	emory base ems: ject o	r, DSN d sys JINI 1 riente	M serv tems Imple d proj	vers, shared mem : the world wid mentation: JAVA gramming with S	lory consistency i le web, distribut A RMI, OLE, Ac OM	model, ed co- ctiveX,	8	

Programme:- MCA(AI/ML)

Semester - III

Text Books/ References Book:-										
Name of	f Authors	Titles of the Book	Edition	Name of the						
				Publisher						
Andrew	S. Tanenbaum,	Distributed Systems Principles		Pearson Education						
Maarten	Van Steen	and Paradigms		Inc. 2002.						
Lui		Distributed Computing								
		Principles and Applications								
Harry Si	ngh	Progressing to Distributed		Prentice -Hall Inc						
		Multiprocessing								
B.W. La	mpson	Distributed Systems Architecture 1985 Springe								
		Design & Implementation		Varlag.						
Parker Y	7. Verjies J. P.	Distributed computing Systems,		PHI						
		Synchronization, control &								
		Communications								
Robert J	. & Thieranf	Distributed Processing Systems		Prentice Hall						
George	Coulios	Distribute System: Design and		Pearson Education						
		Concepts								
COURS	SE OUTCOMES:	Students will be able to								
CO1	Describe hardwa	re and software issues in modern di	stributed system	18.						
CO2	Explain clock sy	nchronization and mutual exclusion	•							
CO3	Describe synchro	onization, consistency and replication	on, fault tolerand	ce, security.						
CO4	Explain goal and	l design issues in distributed system	s.							
CO5	Understand distr	ibuted shared memory management	•							

Programme:- MCA(AI/ML)

Semester - III

Name of Paper	Paper Code	Practical					
		Credit		Marks			
Minor Project on NLP	MAI-306	Р	J	ESP	CAP	Total	
		0	8	120	80	200	

A complete application is to be designed using front end and back end tools to fulfill the requirements of any company/firm/office with report generation modules.

Programme:- MCA(AI/ML)

Semester - III

Name of Paper	Paper Code	Practical					
		Credit		Marks			
Elective -I Lab	MAI-307	Р	J	ESP	САР	Total	
		2	0	30	20	50	

Programs are to be implemented based on the elective subject chosen.